MATH 127 - Midterm Exam 2 - Review

Spring 2022 - Sections 14.8, 15.1-15.6, and 13.1-13.3 and some 16.1

Midterm Exam 2, Tuesday 4/12, 5:50-7:50 pm in Budig 130
The following is a list of important concepts will be tested on Midterm Exam 2. This is not a complete list of the material that you should know for the course, but the review provides a summary of concepts and the problems are a good indication of what will be emphasized on the free response portion of the exam. A thorough understanding of all of the following concepts will help you perform well on the exam. Some places to find problems on these topics are the following: in the book, in the slides, in the homework, on quizzes, and Achieve.

Vector Valued Functions: (Sections 13.1-13.3)

A vector function has scalar inputs and vector outputs.

$$
\text { In } \mathbb{R}^{2}: \vec{s}(t)=\langle f(t), g(t)\rangle \quad \underline{\operatorname{In} \mathbb{R}^{3}:} \vec{r}(t)=\langle f(t), g(t), h(t)\rangle \quad f, g, h \text { are scalar functions. }
$$

The range of $\vec{r}(t)$ in \mathbb{R}^{3} is a space curve \mathcal{C}. Every space curve can be parameterized in infinitely many ways. An arclength parametrization of \mathcal{C} has speed 1 everywhere, $\mathbf{s}(t)=\left|\vec{r}^{\prime}(t)\right|=1$ for all t.
The tangent line to \mathcal{C} at $\vec{r}(a)$ has direction vector $\vec{r}^{\prime}(a)=\left\langle f^{\prime}(a), g^{\prime}(a), h^{\prime}(a)\right\rangle$.
The arclength of the section of \mathcal{C} defined by the interval $[a, b]$ on \vec{r} is $\int_{a}^{b}\left|\vec{r}^{\prime}(\tau)\right| d \tau$.
Space curves are visualized by projecting \mathcal{C} onto planes and determining surfaces on which \mathcal{C} lies, that is, finding equations satisfied by \vec{r}.
$\int \vec{r}(t) d t=\left\langle\int f(t) d t, \int g(t) d t, \int h(t) d t\right\rangle \quad$ with distinct antiderivative constants in components.

1. Sketch the graph of each curve by finding surfaces on which they lie.
(A) $\langle t, t \cos (t), t \sin (t)\rangle$
(B) $\langle\cos (t), \sin (t), \sin (2 t)\rangle$
(C) $\langle t, \cos (t), \sin (t)\rangle$
(A) $\langle t, t \cos (t), t \sin (t)\rangle$

The curve lies on the cone $x^{2}=y^{2}+z^{2}$.

$$
\text { (B) }\langle\cos (t), \sin (t), \sin (2 t)\rangle
$$

The curve lies on the cylinder $x^{2}+y^{2}=1$. Through one rotation around the cylinder, the curve goes up and down twice.
(C) $\langle t, \cos (t), \sin (t)\rangle$

The curve lies on the cylinder $y^{2}+z^{2}=1$.
2. Find a vector function that represents the intersection of the surfaces $x^{2}+y^{2}=4$ and $z=x y$.

First, parametrize the cylinder $x^{2}+y^{2}=4$ using $x(t)=2 \cos (t)$ and $y(t)=2 \sin (t)$. To satisfy the second equation, $z(t)=4 \cos (t) \sin (t)$.

$$
\vec{r}(t)=\langle 2 \cos (t), 2 \sin (t), 4 \cos (t) \sin (t)\rangle
$$

Note: An infinite number of distinct solutions exist.
3. Find the tangent line to the curve $\vec{r}(t)=\langle 2 \cos (2 \pi t), 2 \sin (2 \pi t), 4 t\rangle$ at $(0,2,1)$.

The curve hits $(0,2,1)$ at $t=\frac{1}{4}$.

$$
\vec{r}^{\prime}(t)=\langle-4 \pi \sin (2 \pi t), 4 \pi \cos (2 \pi t), 4\rangle \quad \vec{r}^{\prime}(1 / 4)=\langle-4 \pi, 0,4\rangle
$$

The tangent line to \vec{r} at $t=1 / 4$ is $\quad \vec{L}(t)=\langle 0,2,1\rangle+t\langle-4 \pi, 0,4\rangle$.

Optimization: (Sections 14.7 and 14.8)

Optimization - Absolute Extrema: The Extreme Value Theorem guarantees that functions which are continuous on a closed and bounded set \mathcal{D} attain an absolute maximum and minimum value in \mathcal{D}.
Absolute extrema of a continuous function on a closed and bounded set are located using the Closed Interval Method.
(I) Find all critical points in \mathcal{D} and their values.
(II) Find the values of the absolute extrema of f on the boundary of \mathcal{D} using either
(a) substitution and the closed interval method from MATH 125,
or (b) Lagrange Multipliers.
(III) The largest values from (I) and $(I I)$ are the absolute maximum values and the smallest values are the absolute minimum values.

Lagrange Multipliers: If f and g are differentiable functions and f has a local extrema on the constraint curve $g(x, y)=k$ at (a, b), where $\nabla g(a, b) \neq \overrightarrow{0}$, then there exists a scalar λ such that $\nabla f(a, b)=\lambda \nabla g(a, b)$.

Exercises:

1. Find the minimum distance from the cone $z=\sqrt{x^{2}+y^{2}}$ to the point $(-6,4,0)$.

Minimize the square root of the distance from (x, y, z) to $(-6,4,0)$

$$
D(x, y, z)=(x+6)^{2}+(y-4)^{2}+z^{2}
$$

Constraints: $g(x, y, z)=x^{2}+y^{2}-z^{2}=0$ and $z \geq 0$.
Using Lagrange Multipliers, $\nabla D=\lambda \nabla g$.

$$
2 x+12=\lambda 2 x \quad 2 y-8=\lambda 2 y \quad 2 z=-\lambda 2 z \quad z=\sqrt{x^{2}+y^{2}}
$$

From the third equation, either $\lambda=-1$ or $z=0$.
If $z=0$, then $(x, y, z)=(0,0,0)$. If $\lambda=-1$, then $(x, y, z)=(-3,2, \sqrt{13})$.
Since $D(0,0,0)=52$ and $D(-3,2, \sqrt{13})=26$, the minimum distance is $\sqrt{26}$ at the point $(-3,2, \sqrt{13})$.
2. A cardboard box without a lid is to have a volume of $32 \mathrm{in}^{3}$. Find the dimensions that minimizes the amount of cardboard used.

Minimize the surface area of the box with dimensions x, y, z.

$$
S(x, y, z)=x y+2 x z+2 y z
$$

Constraint: $V(x, y, z)=x y z=32$.

Using Lagrange Multipliers, $\nabla S=\lambda \nabla V$.

$$
y+2 z=\lambda y z \quad x+2 z=\lambda x z \quad 2 x+2 y=\lambda x y \quad x y z=32
$$

From the first three equations, $x y+2 x z=x y+2 y z=2 x z+2 y z=\lambda x y z$, implying $x=y=2 z$.
Therefore, $x(x)(0.5 x)=32$ and $(x, y, z)=(4,4,2)$.
3. Find the point closest to the origin on the line of intersection of the planes $y+2 z=12$ and $x+y=6$.

Minimize the square root of the distance from (x, y, z) to $(0,0,0)$

$$
D(x, y, z)=x^{2}+y^{2}+z^{2}
$$

Constraints: $g(x, y, z)=y+2 z=12$ and $h(x, y, z)=x+y=6$.

Using Lagrange Multipliers, $\nabla D=\lambda \nabla g+\mu \nabla h$.

$$
2 x=\mu \quad 2 y=\lambda+\mu \quad 2 z=2 \lambda \quad y+2 z=12 \quad x+y=6
$$

From the first three equations, $2 y=z+2 x$.
Solving the system of equations yields $(x, y, z)=(2,4,4)$.

Double and Triple Integrals: (Sections 15.1, 15.2, 15.3)

$\iint_{\mathcal{D}} f(x, y) d A$ represents the net volume contained under the surface $z=f(x, y)$ over the domain \mathcal{D}.
Fubini's Theorem: If $\mathcal{R}=[a, b] \times[c, d]$, then $\iint_{\mathcal{R}} f(x, y) d A=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x=\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y$.
Vertically Simple Regions

$$
\iint_{\mathcal{D}} f(x, y) d A=\int_{a}^{b} \int_{g_{1}(x)}^{g_{2}(x)} f(x, y) d y d x
$$

Horizontally Simple Regions

$\iint_{\mathcal{D}} f(x, y) d A=\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x d y$
$\iiint_{\mathcal{S}} f(x, y) d V$ represents the net hypervolume contained under $t=f(x, y, z)$ over the solid \mathcal{S}. Fubini's Theorem: If $\mathcal{S}=[a, b] \times[c, d] \times[e, f]$, then $\iiint_{\mathcal{S}} f(x, y, z) d V=$

$$
\iint_{[a, b] \times[c, d]} \int_{e}^{f} f(x, y, z) d z d A=\iint_{[a, b] \times[e, f]} \int_{c}^{d} f(x, y, z) d y d A=\iint_{[c, d] \times[e, f]} \int_{a}^{b} f(x, y, z) d x d A
$$

Z-Simple Solids:

$$
\iiint_{\mathcal{E}} f(x, y, z) d V=\iint_{\mathcal{D}} \int_{u_{1}(x, y)}^{u_{2}(x, y)} f(x, y, z) d z d A
$$

Y-Simple Solids:

$$
\iiint_{\mathcal{E}} f(x, y, z) d V=\iint_{\mathcal{D}} \int_{u_{1}(x, z)}^{u_{2}(x, z)} f(x, y, z) d y d A
$$

X-Simple Solids:

$$
\iiint_{\mathcal{E}} f(x, y, z) d V=\iint_{\mathcal{D}} \int_{u_{1}(y, z)}^{u_{2}(y, z)} f(x, y, z) d x d A
$$

The moments and the center of mass:

The coordinates (\bar{x}, \bar{y}) of the center of mass of a The coordinates $(\bar{x}, \bar{y}, \bar{z})$ of the center of mass of a lamina are

$$
\begin{aligned}
& \bar{x}=\frac{M_{y}}{m}=\frac{1}{m} \iint_{D} x \delta(x, y) d A \\
& \bar{y}=\frac{M_{x}}{m}=\frac{1}{m} \iint_{D} y \delta(x, y) d A
\end{aligned}
$$

$$
\begin{aligned}
& \bar{x}=\frac{M_{y z}}{m}=\frac{1}{m} \iiint_{S} x \delta(x, y, z) d V \\
& \bar{y}=\frac{M_{x z}}{m}=\frac{1}{m} \iiint_{S} y \delta(x, y, z) d V \\
& \bar{z}=\frac{M_{x y}}{m}=\frac{1}{m} \iiint_{S} z \delta(x, y, z) d V
\end{aligned}
$$

Exercises:

1. Find the volume of the solid cut from the first octant by the surface $z=4-x^{2}-y$.

The solid consists of points (x, y, z) where $0 \leq z \leq 4-x^{2}-y, 0 \leq y \leq 4-x^{2}, 0 \leq x \leq 2$.

$$
\int_{0}^{2} \int_{0}^{4-x^{2}} \int_{0}^{4-x^{2}-y} 1 d z d y d x=\int_{0}^{2} \int_{0}^{4-x^{2}} 4-x^{2}-y d y d x=\frac{1}{2} \int_{0}^{2}\left(4-x^{2}\right)^{2} d x=\frac{128}{15}
$$

2. For the following iterated integrals, sketch the region of integration, write an equivalent double integral, and evaluate the integral.
(A) $\int_{0}^{1} \int_{y}^{1} x^{2} e^{x y} d x d y$
(C) $\int_{0}^{3} \int_{\sqrt{x / 3}}^{1} e^{y^{3}} d y d x$
(B) $\int_{0}^{\pi} \int_{x}^{\pi} \frac{\sin (y)}{y} d y d x$
(D) $\int_{0}^{2} \int_{x}^{2} 2 y^{2} \sin (x y) d y d x$
(A) $\int_{0}^{1} \int_{y}^{1} x^{2} e^{x y} d x d y=\int_{0}^{1} \int_{0}^{x} x^{2} e^{x y} d y d x$

$$
\begin{aligned}
& =\int_{0}^{1} x e^{x^{2}}-x d x \\
& =\frac{1}{2}(e-2)
\end{aligned}
$$

(B) $\int_{0}^{\pi} \int_{x}^{\pi} \frac{\sin (y)}{y} d y d x=\int_{0}^{\pi} \int_{0}^{y} \frac{\sin (y)}{y} d x d y$

$$
\begin{aligned}
& =\int_{0}^{\pi} \sin (y) d y \\
& =2
\end{aligned}
$$

(C) $\int_{0}^{3} \int_{\sqrt{x / 3}}^{1} e^{y^{3}} d y d x=\int_{0}^{1} \int_{0}^{3 y^{2}} e^{y^{3}} d x d y$

$$
=\int_{0}^{1} 3 y^{2} e^{y^{3}} d y
$$

(D) $\int_{0}^{2} \int_{x}^{2} 2 y^{2} \sin (x y) d y d x=\int_{0}^{2} \int_{0}^{y} 2 y^{2} \sin (x y) d x d y$
$=\int_{0}^{2} 2 y-2 y \cos \left(y^{2}\right) d y$
$=4-\sin (4)$

3. Let \mathcal{S} be the solid in the first octant defined by $z=1-x$ and $y=x^{2}$. Iterate $\iiint_{\mathcal{S}} f(x, y, z) d V$ in three ways: $d z$ first, $d y$ first, and $d x$ first.

$$
\int_{0}^{1} \int_{0}^{x^{2}} \int_{0}^{1-x} f d z d y d x \quad \int_{0}^{1} \int_{0}^{1-x} \int_{0}^{x^{2}} f d y d z d x \quad \int_{0}^{1} \int_{0}^{1-\sqrt{y}} \int_{\sqrt{y}}^{1-z} f d x d z d y
$$

4. Let \mathcal{S} be the solid defined by $y+z=1, y=x^{2}$, and $z=0$. Iterate $\iiint_{\mathcal{S}} f(x, y, z) d V$ in three ways: $d z$ first, $d y$ first, and $d x$ first.

$$
\int_{-1}^{1} \int_{x^{2}}^{1} \int_{0}^{1-y} f d z d y d x \quad \int_{-1}^{1} \int_{0}^{1-x^{2}} \int_{x^{2}}^{1-z} f d y d z d x \quad \int_{0}^{1} \int_{0}^{1-y} \int_{-\sqrt{y}}^{\sqrt{y}} f d x d z d y
$$

Change of Variables: (Sections 12.7, 15.4, 15.6)

A transformation from \mathbb{R}^{2} to \mathbb{R}^{2} is an invertible map $T(u, v)=(x, y)$ where $x=f(u, v)$ and $y=g(u, v)$ have continuous first-order partial derivatives.
The Jacobian of the transformation $T(u, v)=(x(u, v), y(u, v))$ represents the instantaneous change in area near (u, v).

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|
$$

If $T(\mathcal{S})=\mathcal{R}$, then $\iint_{\mathcal{R}} f(x, y) d A_{x y}=\iint_{\mathcal{S}} f(x(u, v), y(u, v))\left|\frac{\partial(x, y)}{\partial(u, v)}\right| d A_{u v}$.
Change of Variables should be used to simplify the integrand or simplify the domain of integration.

Common Transformations:

Polar Coordinates: $G(r, \theta)=(r \cos (\theta), r \sin (\theta))$ with $\frac{\partial(x, y)}{\partial(r, \theta)}=r$.
Cylindrical Coordinates: $G(r, \theta, z)=(r \cos (\theta), r \sin (\theta), z)$ with $\frac{\partial(x, y, z)}{\partial(u, v, w)}=r$.
Spherical Coordinates: $G(\rho, \phi, \theta)=(\rho \sin (\phi) \cos (\theta), \rho \sin (\phi) \sin (\theta), \rho \cos (\phi))$ with $\frac{\partial(x, y, z)}{\partial(\rho, \phi, \theta)}=\rho^{2} \sin (\phi)$.

Cylindrical Coordinates
(

Spherical Coordinates

Exercises:

1. Evaluate $\iint_{\mathcal{R}} x+3 y d A$ where \mathcal{R} is defined by $x+2 y=10, x+2 y=6, y=1$, and $y=3$.

Using the transformation $T^{-1}(x, y)=(x+2 y, y)$, the region \mathcal{R} is mapped to the region consisting of points (u, v) where $6 \leq u \leq 10$ and $1 \leq v \leq 3$.

$$
\frac{\partial(u, v)}{\partial(x, y)}=\left|\begin{array}{ll}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right|=\left|\begin{array}{cc}
1 & 2 \\
0 & 1
\end{array}\right|=1 \quad \frac{\partial(x, y)}{\partial(u, v)}=1
$$

Since $x+3 y=x+2 y+y=u+v$,

$$
\iint_{\mathcal{R}} x+3 y d A=\int_{1}^{3} \int_{6}^{10}(u+v) 1 d u d v=80
$$

2. Evaluate $\int_{1}^{2} \int_{1 / y}^{y} \sqrt{\frac{y}{x}} e^{\sqrt{x y}} d x d y$.

The region of integration consists of the points (x, y) where $1 \leq y \leq 2$ and $1 / y \leq x \leq y$.
This region is bounded by the curves $y=2, y=x$, and $y=\frac{1}{x}$.
Using the transformation $T^{-1}(x, y)=\left(\frac{y}{x}, x y\right)$, the boundaries of the region are transformed to the curves $v=\frac{4}{u}, v=1$, and $u=1$ in the $u v$-plane.

$$
\begin{aligned}
\frac{\partial(u, v)}{\partial(x, y)}=\left|\begin{array}{cc}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right|=\left|\begin{array}{cc}
\frac{-y}{x^{2}} & \frac{1}{x} \\
y & x
\end{array}\right| & =\frac{-2 y}{x}=-2 u \quad \frac{\partial(x, y)}{\partial(u, v)}=\frac{1}{-2 u} \\
\int_{1}^{2} \int_{1 / y}^{y} \sqrt{\frac{y}{x}} e^{\sqrt{x y}} d x d y & =\int_{1}^{4} \int_{1}^{4 / v} \sqrt{u} e^{\sqrt{v}} \frac{1}{2 u} d u d v \\
& =\int_{1}^{4}\left(\sqrt{\frac{4}{v}}-1\right) e^{\sqrt{v}} d v \approx 8.08
\end{aligned}
$$

Note:

Use $U=2-\sqrt{v}$ and $d V=\frac{e^{\sqrt{v}}}{\sqrt{v}} d v$ for integration parts to get:
$\int\left(\sqrt{\frac{4}{v}}-1\right) e^{\sqrt{v}} d v=-2 e^{\sqrt{(v)}}(-3+\sqrt{(v)})+c$

3. Evaluate $\iint_{\mathcal{R}}(x-y)^{2} \sin ^{2}(x+y) d A$ where $\mathcal{R}=[\pi, 2 \pi] \times[0, \pi]$.

Use the transformation $T^{-1}(x, y)=(x-y, x+y)$, where $T(u, v)=\left(\frac{u+v}{2}, \frac{v-u}{2}\right)$.

- The edge $x=\pi$ is mapped to $v=-u+2 \pi$.
- The edge $x=2 \pi$ is mapped to $v=-u+4 \pi$.
- The edge $y=0$ is mapped to $v=u$.
- The edge $y=\pi$ is mapped to $v=u+2 \pi$.

The region \mathcal{R} is mapped to the region consisting of points (u, v) where $-u+2 \pi \leq v \leq u+2 \pi$ where $0 \leq u \leq \pi$ or $u \leq v \leq-u+4 \pi$ where $\pi \leq u \leq 2 \pi$.

$$
\begin{aligned}
& \frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{cc}
0.5 & 0.5 \\
-0.5 & 0.5
\end{array}\right|=\frac{1}{2} \\
& \iint_{\mathcal{R}}(x-y)^{2} \sin (x+y)^{2} d A=\frac{1}{2} \int_{0}^{\pi} \int_{-u+2 \pi}^{u+2 \pi} u^{2} \sin ^{2}(v) d v d u+\frac{1}{2} \int_{\pi}^{2 \pi} \int_{u}^{-u+4 \pi} u^{2} \sin ^{2}(v) d v d u \\
&=\frac{1}{8}\left(\pi^{4}+\pi^{2}\right)+\frac{1}{24}\left(11 \pi^{4}-9 \pi^{2}\right)
\end{aligned}
$$

(x, y)	(u, v)
$(\pi, 0)$	(π, π)
(π, π)	$(0,2 \pi)$
$(2 \pi, \pi)$	$(\pi, 3 \pi)$
$(2 \pi, 0)$	$(2 \pi, 2 \pi)$

4. Evaluate $\iint_{\mathcal{R}} 3 x^{2}+2 x d A$ where \mathcal{R} is the region bounded by the curves $y=x^{3}+6, y=x^{3}+5$, $y=9-x^{2}$, and $y=8-x^{2}$.

Using the transformation $T^{-1}(x, y)=\left(y-x^{3}, y+x^{2}\right)$, the region \mathcal{R} is mapped to the rectangle in the $u v$-plane consisting of points (u, v) where $5 \leq u \leq 6$ and $8 \leq v \leq 9$.

$$
\begin{gathered}
\frac{\partial(u, v)}{\partial(x, y)}=\left|\begin{array}{ll}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right|=\left|\begin{array}{cc}
-3 x^{2} & 1 \\
2 x & 1
\end{array}\right|=-3 x^{2}-2 x \\
\iint_{\mathcal{R}} 3 x^{2}+2 x d A=\int_{5}^{6} \int_{8}^{9} 3 x^{2}+2 x\left|\frac{1}{-3 x^{2}-2 x}\right| d v d u=1
\end{gathered}
$$

5. Find the volume of the solid bounded by $z=0, z=4-y$, and $x^{2}+(y-1)^{2}=1$.

Using polar coordinates, the equation $x^{2}+(y-1)^{2}=1$ is $r=2 \sin (\theta)$.
The volume of the solid is

$$
\iint_{x^{2}+(y-1)^{2}=1} 4-y d A=\int_{0}^{\pi} \int_{0}^{2 \sin (\theta)}(4-r \sin (\theta)) r d r d \theta=3 \pi
$$

You can use cylindrical coordinates a triple integral to get the same result.
6. Find the volume of the solid above the sphere $x^{2}+y^{2}+z^{2}=2 z$ and below the cone $z=\sqrt{x^{2}+y^{2}}$.

Using spherical coordinates, the volume of the solid is

$$
\int_{0}^{2 \pi} \int_{\pi / 4}^{\pi / 2} \int_{0}^{2 \cos (\phi)} 1 \rho^{2} \sin (\phi) d \rho d \phi d \theta=\frac{\pi}{3}
$$

7. Find the volume of the region cut from the cylinder $x^{2}+y^{2}=1$ by the sphere $x^{2}+y^{2}+z^{2}=4$.

Using cylindrical coordinates, the volume of the solid is

$$
\int_{0}^{2 \pi} \int_{0}^{1} \int_{-\sqrt{4-r^{2}}}^{\sqrt{4-r^{2}}} 1 r d z d r d \theta=\frac{4 \pi}{3}(8-3 \sqrt{3})
$$

Vector Fields:

(Sections 16.1)
A vector field in \mathbb{R}^{n}, denoted \vec{F}, is a function that assigns to each point $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ in \mathbb{R}^{n} a vector $\vec{F}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ in \mathbb{R}^{n}. The vector field field \vec{F} is smooth if each of its' components are continuously differentiable.
A vector field \vec{F} is a unit vector field if $\|\vec{F}(P)\|=1$ for every point P.
A vector field \vec{F} is a radial vector field if $F(P)$ depends only on the distance from P to the origin, O, and is parallel to $\overrightarrow{O P}$.

$$
\vec{E}_{\mathbb{R}^{2}}=\left\langle\frac{x}{\sqrt{x^{2}+y^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}}}\right\rangle \quad \vec{E}_{\mathbb{R}^{3}}=\left\langle\frac{x}{\sqrt{x^{2}+y^{2}+z^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}+z^{2}}}, \frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}\right\rangle
$$

The divergence of a vector field $\vec{F}=\left\langle F_{1}, F_{2}, F_{3}\right\rangle$ is defined

$$
\operatorname{div}(\vec{F})=\nabla \cdot \vec{F}=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z}
$$

The curl of a vector field $\vec{F}=\left\langle F_{1}, F_{2}, F_{3}\right\rangle$ is defined

$$
\operatorname{curl}(\vec{F})=\nabla \times \vec{F}=\left\langle\frac{\partial F_{3}}{\partial y}-\frac{\partial F_{2}}{\partial z}, \frac{\partial F_{1}}{\partial z}-\frac{\partial F_{3}}{\partial x}, \frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right\rangle
$$

Given a differential function $f(x, y, z)$, its gradient vector field

$$
\vec{F}=\nabla f=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\rangle
$$

is called a conservative vector field. The function f is called a potential function for \vec{F}.

If the vector field $\vec{F}=\left\langle F_{1}, F_{2}\right\rangle$ is conservative then $\frac{\partial F_{1}}{\partial y}=\frac{\partial F_{2}}{\partial x}$.
If the vector field $\vec{F}=\left\langle F_{1}, F_{2}, F_{3}\right\rangle$ is conservative then $\operatorname{curl}(\vec{F})=\overrightarrow{0}$ and

$$
\frac{\partial F_{1}}{\partial y}=\frac{\partial F_{2}}{\partial x} \quad \frac{\partial F_{1}}{\partial z}=\frac{\partial F_{3}}{\partial x} \quad \frac{\partial F_{2}}{\partial z}=\frac{\partial F_{3}}{\partial y}
$$

Exercises:

1. $f(x, y)=x^{2}-y$ is a potential function for \vec{F}. Find and sketch \vec{F}.

$$
\vec{F}(x, y)=\langle 2 x,-1\rangle
$$

OR

2. $f(x, y)=\sqrt{x^{2}+y^{2}}$ is a potential function for \vec{F}. Find and sketch \vec{F}.

$$
\vec{F}(x, y)=\left\langle\frac{x}{\sqrt{x^{2}+y^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}}}\right\rangle
$$

3. Calculate the curl and divergence of the vector fields:
(A) $\vec{F}(x, y, z)=\left\langle x y z, 0,-x^{2} y\right\rangle$
$\operatorname{div}(\vec{F})=\frac{\partial}{\partial x}(x y z)+\frac{\partial}{\partial y}(0)+\frac{\partial}{\partial z}\left(-x^{2} y\right)=y z$
$\operatorname{curl}(\vec{F})=\left\langle\frac{\partial}{\partial y}\left(-x^{2} y\right)-\frac{\partial}{\partial z}(0), \frac{\partial}{\partial z}(x y z)-\frac{\partial}{\partial x}\left(-x^{2} y\right), \frac{\partial}{\partial x}(0)-\frac{\partial}{\partial y}(x y z)\right\rangle=\left\langle-x^{2}, 3 x y,-x z\right\rangle$
(B) $\vec{F}(x, y, z)=\langle 0, \cos (x z),-\sin (x y)\rangle$

$$
\operatorname{div}(\vec{F})=0 \quad \operatorname{curl}(\vec{F})=\langle-x \cos (x y)+x \sin (x z), y \cos (x y),-z \sin (x z)\rangle
$$

(C) $\nabla\left(e^{x y z}\right)$

$$
\begin{array}{ll}
\nabla\left(e^{x y z}\right)=\left\langle y z e^{x y z}, x z e^{x y z}, x y e^{x y z}\right\rangle & \vec{F} \text { is conservative, so curl }(\vec{F})=\overrightarrow{0} \\
\operatorname{div}(\vec{F})=\left(y^{2} z^{2}+x^{2} z^{2}+x^{2} y^{2}\right) e^{x y z} &
\end{array}
$$

