MATH 127 - Midterm Exam 2 - Review

Spring 2022 - Sections 14.8, 15.1-15.6, and 13.1-13.3 and some 16.1

Midterm Exam 2, Tuesday 4/12, 5:50-7:50 pm in Budig 130

The following is a list of important concepts will be tested on Midterm Exam 2. This is not a complete list of the material that you should know for the course, but the review provides a summary of concepts and the problems are a good indication of what will be emphasized on the free response portion of the exam. A thorough understanding of all of the following concepts will help you perform well on the exam. Some places to find problems on these topics are the following: in the book, in the slides, in the homework, on quizzes, and Achieve.

Vector Valued Functions: (Sections 13.1 - 13.3)

A vector function has scalar inputs and vector outputs.

 $\underline{\operatorname{In}\,\mathbb{R}^2}: \quad \vec{s}(t) = \langle f(t), g(t) \rangle \qquad \qquad \underline{\operatorname{In}\,\mathbb{R}^3}: \quad \vec{r}(t) = \langle f(t), g(t), h(t) \rangle \qquad f, g, h \text{ are scalar functions.}$

The range of $\vec{r}(t)$ in \mathbb{R}^3 is a space curve \mathcal{C} . Every space curve can be parameterized in infinitely many ways. An arclength parametrization of \mathcal{C} has speed 1 everywhere, $\mathbf{s}(t) = |\vec{r}'(t)| = 1$ for all t.

The tangent line to \mathcal{C} at $\vec{r}(a)$ has direction vector $\vec{r}'(a) = \langle f'(a), g'(a), h'(a) \rangle$.

The arclength of the section of C defined by the interval [a, b] on \vec{r} is $\int_a^b |\vec{r'}(\tau)| d\tau$.

Space curves are visualized by projecting C onto planes and determining surfaces on which C lies, that is, finding equations satisfied by \vec{r} .

$$\int \vec{r}(t) dt = \left\langle \int f(t) dt, \int g(t) dt, \int h(t) dt \right\rangle \quad \text{with distinct antiderivative constants in components.}$$

- 1. Sketch the graph of each curve by finding surfaces on which they lie.
 - (A) $\langle t, t\cos(t), t\sin(t) \rangle$ (B) $\langle \cos(t), \sin(t), \sin(2t) \rangle$ (C) $\langle t, \cos(t), \sin(t) \rangle$
 - (A) $\langle t, t \cos(t), t \sin(t) \rangle$

(B) $\langle \cos(t), \sin(t), \sin(2t) \rangle$

(C) $\langle t, \cos(t), \sin(t) \rangle$

2. Find a vector function that represents the intersection of the surfaces $x^2 + y^2 = 4$ and z = xy.

First, parametrize the cylinder $x^2 + y^2 = 4$ using $x(t) = 2\cos(t)$ and $y(t) = 2\sin(t)$. To satisfy the second equation, $z(t) = 4\cos(t)\sin(t)$.

 $\vec{r}(t) = \langle 2\cos(t), 2\sin(t), 4\cos(t)\sin(t) \rangle$

Note: An infinite number of distinct solutions exist.

3. Find the tangent line to the curve $\vec{r}(t) = \langle 2\cos(2\pi t), 2\sin(2\pi t), 4t \rangle$ at (0, 2, 1).

The curve hits (0, 2, 1) at $t = \frac{1}{4}$. $\vec{r}'(t) = \langle -4\pi \sin(2\pi t), 4\pi \cos(2\pi t), 4 \rangle$ $\vec{r}'(1/4) = \langle -4\pi, 0, 4 \rangle$ The tangent line to \vec{r} at t = 1/4 is $\overrightarrow{L}(t) = \langle 0, 2, 1 \rangle + t \langle -4\pi, 0, 4 \rangle$.

Optimization: (Sections 14.7 and 14.8)

Optimization - Absolute Extrema: The *Extreme Value Theorem* guarantees that functions which are continuous on a *closed* and *bounded* set \mathcal{D} attain an absolute maximum and minimum value in \mathcal{D} .

Absolute extrema of a continuous function on a closed and bounded set are located using the *Closed Interval Method*.

- (I) Find all critical points in \mathcal{D} and their values.
- (II) Find the values of the absolute extrema of f on the boundary of \mathcal{D} using either
 - (a) substitution and the closed interval method from MATH 125,
 - or (b) Lagrange Multipliers.
- (III) The largest values from (I) and (II) are the absolute maximum values and the smallest values are the absolute minimum values.

Lagrange Multipliers: If f and g are differentiable functions and f has a local extrema on the constraint curve g(x, y) = k at (a, b), where $\nabla g(a, b) \neq \vec{0}$, then there exists a scalar λ such that $\nabla f(a, b) = \lambda \nabla g(a, b)$.

Exercises:

1. Find the minimum distance from the cone $z = \sqrt{x^2 + y^2}$ to the point (-6, 4, 0).

Minimize the square root of the distance from (x, y, z) to (-6, 4, 0) $D(x, y, z) = (x + 6)^2 + (y - 4)^2 + z^2$ Constraints: $g(x, y, z) = x^2 + y^2 - z^2 = 0$ and $z \ge 0$. Using Lagrange Multipliers, $\nabla D = \lambda \nabla g$. $2x + 12 = \lambda 2x$ $2y - 8 = \lambda 2y$ $2z = -\lambda 2z$ $z = \sqrt{x^2 + y^2}$ From the third equation, either $\lambda = -1$ or z = 0. If z = 0, then (x, y, z) = (0, 0, 0). If $\lambda = -1$, then $(x, y, z) = (-3, 2, \sqrt{13})$. Since D(0, 0, 0) = 52 and $D(-3, 2, \sqrt{13}) = 26$, the minimum distance is $\sqrt{26}$ at the point $(-3, 2, \sqrt{13})$.

2. A cardboard box without a lid is to have a volume of $32 in^3$. Find the dimensions that minimizes the amount of cardboard used.

Minimize the surface area of the box with dimensions x, y, z.

$$S(x, y, z) = xy + 2xz + 2yz$$

Constraint: V(x, y, z) = xyz = 32.

Using Lagrange Multipliers, $\nabla S = \lambda \nabla V$.

 $y + 2z = \lambda yz$ $x + 2z = \lambda xz$ $2x + 2y = \lambda xy$ xyz = 32

From the first three equations, $xy + 2xz = xy + 2yz = 2xz + 2yz = \lambda xyz$, implying x = y = 2z. Therefore, x(x)(0.5x) = 32 and (x, y, z) = (4, 4, 2). 3. Find the point closest to the origin on the line of intersection of the planes y+2z = 12 and x+y = 6.

Minimize the square root of the distance from
$$(x, y, z)$$
 to $(0, 0, 0)$
 $D(x, y, z) = x^2 + y^2 + z^2$
Constraints: $g(x, y, z) = y + 2z = 12$ and $h(x, y, z) = x + y = 6$.
Using Lagrange Multipliers, $\nabla D = \lambda \nabla g + \mu \nabla h$.
 $2x = \mu$ $2y = \lambda + \mu$ $2z = 2\lambda$ $y + 2z = 12$ $x + y = 6$
From the first three equations, $2y = z + 2x$.
Solving the system of equations yields $(x, y, z) = (2, 4, 4)$.

Double and Triple Integrals: (Sections 15.1, 15.2, 15.3)

 $\iint_{\mathcal{D}} f(x,y) \, dA \text{ represents the net volume contained under the surface } z = f(x,y) \text{ over the domain } \mathcal{D}.$ Fubini's Theorem: If $\mathcal{R} = [a, b] \times [c, d]$, then $\iint_{\mathcal{R}} f(x, y) \, dA = \int_{a}^{b} \int_{c}^{d} f(x, y) \, dy \, dx = \int_{a}^{d} \int_{a}^{b} f(x, y) \, dx \, dy$. Vertically Simple Regions Horizontally Simple Regions $x = h_1(y) \mathcal{D}$ \mathcal{D} $\iint_{\mathcal{D}} f(x,y) \, dA = \int_{a}^{b} \int_{a_{1}(x)}^{g_{2}(x)} f(x,y) \, dy \, dx \qquad \qquad \iint_{\mathcal{D}} f(x,y) \, dA = \int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x,y) \, dx \, dy$ $\iiint_{\mathcal{S}} f(x,y) \, dV \text{ represents the net hypervolume contained under } t = f(x,y,z) \text{ over the solid } \mathcal{S}.$ Fubini's Theorem: If $\mathcal{S} = [a, b] \times [c, d] \times [e, f]$, then $\iiint_{\mathcal{S}} f(x, y, z) dV =$ $\iint_{[a,b]\times[c,d]} \int_{e}^{f} f(x,y,z) \, dz \, dA = \iint_{[a,b]\times[e,f]} \int_{c}^{d} f(x,y,z) \, dy \, dA = \iint_{[c,d]\times[e,f]} \int_{a}^{b} f(x,y,z) \, dx \, dA$ 5

Z-Simple Solids:

$$\iiint_{\mathcal{E}} f(x, y, z) \, dV \qquad = \iint_{\mathcal{D}} \int_{u_1(x, y)}^{u_2(x, y)} f(x, y, z) \, dz \, dA$$

Y-Simple Solids:

$$\iiint_{\mathcal{E}} f(x, y, z) \, dV \qquad = \iint_{\mathcal{D}} \int_{u_1(x, z)}^{u_2(x, z)} f(x, y, z) \, dy \, dA$$

X-Simple Solids:
$$\iiint_{\mathcal{E}} f(x, y, z) \, dV \qquad = \iint_{\mathcal{D}} \int_{u_1(y, z)}^{u_2(y, z)} f(x, y, z) \, dx \, dA$$

The moments and the center of mass:

The coordinates $(\overline{x}, \overline{y})$ of the center of mass of a lamina are

The coordinates $(\overline{x}, \overline{y}, \overline{z})$ of the center of mass of a solid are

$$\overline{x} = \frac{M_{yz}}{m} = \frac{1}{m} \iiint_S x \delta(x, y, z) \, dV$$
$$\overline{y} = \frac{M_x}{m} = \frac{1}{m} \iiint_S y \delta(x, y, z) \, dV$$
$$\overline{y} = \frac{M_x}{m} = \frac{1}{m} \iiint_S y \delta(x, y, z) \, dV$$
$$\overline{z} = \frac{M_{xy}}{m} = \frac{1}{m} \iiint_S z \delta(x, y, z) \, dV$$

Exercises:

1. Find the volume of the solid cut from the first octant by the surface $z = 4 - x^2 - y$.

The solid consists of points
$$(x, y, z)$$
 where $0 \le z \le 4 - x^2 - y$, $0 \le y \le 4 - x^2$, $0 \le x \le 2$.
$$\int_0^2 \int_0^{4-x^2} \int_0^{4-x^2-y} 1 \, dz \, dy \, dx = \int_0^2 \int_0^{4-x^2} 4 - x^2 - y \, dy \, dx = \frac{1}{2} \int_0^2 (4-x^2)^2 \, dx = \frac{128}{15}$$

2. For the following iterated integrals, sketch the region of integration, write an equivalent double integral, and evaluate the integral.

(A)
$$\int_{0}^{1} \int_{y}^{1} x^{2} e^{xy} dx dy$$

(B) $\int_{0}^{x} \int_{x}^{y} \frac{\sin(y)}{y} dy dx$
(C) $\int_{0}^{3} \int_{\sqrt{x/3}}^{1} e^{x^{3}} dy dx$
(D) $\int_{0}^{2} \int_{x}^{2} 2y^{2} \sin(xy) dy dx$
(A) $\int_{0}^{1} \int_{y}^{1} x^{2} e^{xy} dx dy = \int_{0}^{1} \int_{0}^{x} x^{2} e^{xy} dy dx$
 $= \int_{0}^{1} x e^{x^{2}} - x dx$
 $= \frac{1}{2}(e - 2)$
(B) $\int_{0}^{\pi} \int_{x}^{\pi} \frac{\sin(y)}{y} dy dx = \int_{0}^{\pi} \int_{0}^{y} \frac{\sin(y)}{y} dx dy$
 $= \int_{0}^{\pi} \sin(y) dy$
 $= 2$
(C) $\int_{0}^{3} \int_{\sqrt{x/3}}^{1} e^{y^{x}} dy dx = \int_{0}^{1} \int_{0}^{3y^{2}} e^{y^{3}} dx dy$
 $= \int_{0}^{1} 3y^{2} e^{y^{3}} dy$
 $= e - 1$
(D) $\int_{0}^{2} \int_{x}^{2} 2y^{2} \sin(xy) dy dx = \int_{0}^{2} \int_{0}^{y} 2y^{2} \sin(xy) dx dy$
 2

 $= 4 - \sin(4)$

 $=\int_0^2 2y - 2y\cos(y^2)\,dy$

 $\stackrel{\bullet}{x}$

2

3. Let S be the solid in the *first octant* defined by z = 1 - x and $y = x^2$. Iterate $\iiint_S f(x, y, z) dV$ in three ways: dz first, dy first, and dx first.

$$\int_{0}^{1} \int_{0}^{x^{2}} \int_{0}^{1-x} f \, dz \, dy \, dx \qquad \int_{0}^{1} \int_{0}^{1-x} \int_{0}^{x^{2}} f \, dy \, dz \, dx \qquad \int_{0}^{1} \int_{0}^{1-\sqrt{y}} \int_{\sqrt{y}}^{1-z} f \, dx \, dz \, dy$$

4. Let S be the solid defined by y + z = 1, $y = x^2$, and z = 0. Iterate $\iiint_S f(x, y, z) dV$ in three ways: dz first, dy first, and dx first.

$$\int_{-1}^{1} \int_{x^2}^{1-y} \int_{0}^{1-y} f \, dz \, dy \, dx \qquad \int_{-1}^{1} \int_{0}^{1-x^2} \int_{x^2}^{1-z} f \, dy \, dz \, dx \qquad \int_{0}^{1} \int_{0}^{1-y} \int_{-\sqrt{y}}^{\sqrt{y}} f \, dx \, dz \, dy$$

Change of Variables: (Sections 12.7, 15.4, 15.6)

A transformation from \mathbb{R}^2 to \mathbb{R}^2 is an invertible map T(u, v) = (x, y) where x = f(u, v) and y = g(u, v) have continuous first-order partial derivatives.

The Jacobian of the transformation T(u, v) = (x(u, v), y(u, v)) represents the instantaneous change in area near (u, v).

$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}$$

If
$$T(\mathcal{S}) = \mathcal{R}$$
, then $\iint_{\mathcal{R}} f(x,y) \, dA_{xy} = \iint_{\mathcal{S}} f(x(u,v), y(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| \, dA_{uv}$

Change of Variables should be used to simplify the integrand or simplify the domain of integration.

Common Transformations:

Polar Coordinates:
$$G(r, \theta) = (r \cos(\theta), r \sin(\theta))$$
 with $\frac{\partial(x, y)}{\partial(r, \theta)} = r$.

Cylindrical Coordinates: $G(r, \theta, z) = (r \cos(\theta), r \sin(\theta), z)$ with $\frac{\partial(x, y, z)}{\partial(u, v, w)} = r$.

Spherical Coordinates: $G(\rho, \phi, \theta) = (\rho \sin(\phi) \cos(\theta), \rho \sin(\phi) \sin(\theta), \rho \cos(\phi))$ with $\frac{\partial(x, y, z)}{\partial(\rho, \phi, \theta)} = \rho^2 \sin(\phi)$.

Exercises:

1. Evaluate $\iint_{\mathcal{R}} x + 3y \, dA$ where \mathcal{R} is defined by x + 2y = 10, x + 2y = 6, y = 1, and y = 3.

Using the transformation $T^{-1}(x, y) = (x+2y, y)$, the region \mathcal{R} is mapped to the region consisting of points (u, v) where $6 \le u \le 10$ and $1 \le v \le 3$.

$$\frac{\partial(u,v)}{\partial(x,y)} = \begin{vmatrix} u_x & u_y \\ v_x & v_y \end{vmatrix} = \begin{vmatrix} 1 & 2 \\ 0 & 1 \end{vmatrix} = 1 \qquad \qquad \frac{\partial(x,y)}{\partial(u,v)} = 1$$

Since x + 3y = x + 2y + y = u + v,

$$\iint_{\mathcal{R}} x + 3y \, dA = \int_{1}^{3} \int_{6}^{10} (u+v) \, 1 \, du \, dv = 80$$

2. Evaluate $\int_{1}^{2} \int_{1/y}^{y} \sqrt{\frac{y}{x}} e^{\sqrt{xy}} dx dy.$

The region of integration consists of the points (x, y) where $1 \le y \le 2$ and $1/y \le x \le y$. This region is bounded by the curves y = 2, y = x, and $y = \frac{1}{x}$.

Using the transformation $T^{-1}(x, y) = \left(\frac{y}{x}, xy\right)$, the boundaries of the region are transformed to the curves $v = \frac{4}{u}$, v = 1, and u = 1 in the *uv*-plane.

$$\frac{\partial(u,v)}{\partial(x,y)} = \begin{vmatrix} u_x & u_y \\ v_x & v_y \end{vmatrix} = \begin{vmatrix} \frac{-y}{x^2} & \frac{1}{x} \\ y & x \end{vmatrix} = \frac{-2y}{x} = -2u \qquad \qquad \frac{\partial(x,y)}{\partial(u,v)} = \frac{1}{-2u}$$
$$\int_1^2 \int_{1/y}^y \sqrt{\frac{y}{x}} e^{\sqrt{xy}} \, dx \, dy = \int_1^4 \int_1^{4/v} \sqrt{u} e^{\sqrt{v}} \frac{1}{2u} \, du \, dv$$
$$= \int_1^4 \left(\sqrt{\frac{4}{v}} - 1\right) e^{\sqrt{v}} \, dv \approx 8.08$$

Note:

3. Evaluate $\iint_{\mathcal{R}} (x-y)^2 \sin^2(x+y) \, dA$ where $\mathcal{R} = [\pi, 2\pi] \times [0, \pi]$.

Use the transformation $T^{-1}(x,y) = (x-y, x+y)$, where $T(u,v) = \left(\frac{u+v}{2}, \frac{v-u}{2}\right)$.

• The edge $x = \pi$ is mapped to $v = -u + 2\pi$.

- The edge $x = 2\pi$ is mapped to $v = -u + 4\pi$.
- The edge y = 0 is mapped to v = u.
- The edge $y = \pi$ is mapped to $v = u + 2\pi$.

The region \mathcal{R} is mapped to the region consisting of points (u, v) where $-u + 2\pi \leq v \leq u + 2\pi$ where $0 \leq u \leq \pi$ or $u \leq v \leq -u + 4\pi$ where $\pi \leq u \leq 2\pi$.

4. Evaluate $\iint_{\mathcal{R}} 3x^2 + 2x \, dA$ where \mathcal{R} is the region bounded by the curves $y = x^3 + 6$, $y = x^3 + 5$, $y = 9 - x^2$, and $y = 8 - x^2$.

Using the transformation $T^{-1}(x, y) = (y - x^3, y + x^2)$, the region \mathcal{R} is mapped to the rectangle in the *uv*-plane consisting of points (u, v) where $5 \le u \le 6$ and $8 \le v \le 9$.

$$\frac{\partial(u,v)}{\partial(x,y)} = \begin{vmatrix} u_x & u_y \\ v_x & v_y \end{vmatrix} = \begin{vmatrix} -3x^2 & 1 \\ 2x & 1 \end{vmatrix} = -3x^2 - 2x$$
$$\iint_{\mathcal{R}} 3x^2 + 2x \, dA = \int_5^6 \int_8^9 3x^2 + 2x \, \left| \frac{1}{-3x^2 - 2x} \right| \, dv \, du = 1$$

5. Find the volume of the solid bounded by z = 0, z = 4 - y, and $x^2 + (y - 1)^2 = 1$.

Using polar coordinates, the equation $x^2 + (y-1)^2 = 1$ is $r = 2\sin(\theta)$.

The volume of the solid is

$$\iint_{x^2 + (y-1)^2 = 1} 4 - y \, dA = \int_0^\pi \int_0^{2\sin(\theta)} (4 - r\sin(\theta)) \, r \, dr \, d\theta = 3\pi$$

You can use cylindrical coordinates a triple integral to get the same result.

6. Find the volume of the solid above the sphere $x^2 + y^2 + z^2 = 2z$ and below the cone $z = \sqrt{x^2 + y^2}$.

Using spherical coordinates, the volume of the solid is

$$\int_{0}^{2\pi} \int_{\pi/4}^{\pi/2} \int_{0}^{2\cos(\phi)} 1\,\rho^{2}\sin(\phi)\,d\rho\,d\phi\,d\theta = \frac{\pi}{3}$$

7. Find the volume of the region cut from the cylinder $x^2 + y^2 = 1$ by the sphere $x^2 + y^2 + z^2 = 4$.

Using cylindrical coordinates, the volume of the solid is

$$\int_{0}^{2\pi} \int_{0}^{1} \int_{-\sqrt{4-r^2}}^{\sqrt{4-r^2}} 1 \, r \, dz \, dr \, d\theta = \frac{4\pi}{3} \left(8 - 3\sqrt{3} \right)$$

Vector Fields:

(Sections 16.1)

A vector field in \mathbb{R}^n , denoted \vec{F} , is a function that assigns to each point $(x_1, x_2, ..., x_n)$ in \mathbb{R}^n a vector $\vec{F}(x_1, x_2, ..., x_n)$ in \mathbb{R}^n . The vector field field \vec{F} is smooth if each of its' components are continuously differentiable.

A vector field \vec{F} is a unit vector field if $\left\|\vec{F}(P)\right\| = 1$ for every point P.

A vector field \vec{F} is a radial vector field if F(P) depends only on the distance from P to the origin, O, and is parallel to \vec{OP} .

$$\vec{E}_{\mathbb{R}^2} = \left\langle \frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}} \right\rangle \qquad \qquad \vec{E}_{\mathbb{R}^3} = \left\langle \frac{x}{\sqrt{x^2 + y^2 + z^2}}, \frac{y}{\sqrt{x^2 + y^2 + z^2}}, \frac{z}{\sqrt{x^2 + y^2 + z^2}} \right\rangle$$

The divergence of a vector field $\vec{F} = \langle F_1, F_2, F_3 \rangle$ is defined

div
$$\left(\vec{F}\right) = \nabla \cdot \vec{F} = \frac{\partial F_1}{\partial x} + \frac{\partial F_2}{\partial y} + \frac{\partial F_3}{\partial z}$$

The curl of a vector field $\vec{F} = \langle F_1, F_2, F_3 \rangle$ is defined

$$\operatorname{curl}\left(\vec{F}\right) = \nabla \times \vec{F} = \left\langle \frac{\partial F_3}{\partial y} - \frac{\partial F_2}{\partial z}, \frac{\partial F_1}{\partial z} - \frac{\partial F_3}{\partial x}, \frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right\rangle$$

Given a differential function f(x, y, z), its gradient vector field

$$\vec{F} = \nabla f = \left\langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right\rangle$$

is called a conservative vector field. The function f is called a potential function for \vec{F} .

If the vector field $\vec{F} = \langle F_1, F_2 \rangle$ is conservative then $\frac{\partial F_1}{\partial y} = \frac{\partial F_2}{\partial x}$. If the vector field $\vec{F} = \langle F_1, F_2, F_3 \rangle$ is conservative then $\operatorname{curl}\left(\vec{F}\right) = \vec{0}$ and $\frac{\partial F_1}{\partial y} = \frac{\partial F_2}{\partial x} \qquad \frac{\partial F_1}{\partial z} = \frac{\partial F_3}{\partial x} \qquad \frac{\partial F_2}{\partial z} = \frac{\partial F_3}{\partial y}$

Exercises:

1. $f(x,y) = x^2 - y$ is a potential function for \vec{F} . Find and sketch \vec{F} .

2. $f(x,y) = \sqrt{x^2 + y^2}$ is a potential function for \vec{F} . Find and sketch \vec{F} .

$$\vec{F}(x,y) = \left\langle \frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}} \right\rangle$$

3. Calculate the curl and divergence of the vector fields:

(A)
$$\vec{F}(x,y,z) = \langle xyz, 0, -x^2y \rangle$$

$$\operatorname{div}\left(\vec{F}\right) = \frac{\partial}{\partial x}(xyz) + \frac{\partial}{\partial y}(0) + \frac{\partial}{\partial z}(-x^{2}y) = yz$$
$$\operatorname{curl}\left(\vec{F}\right) = \left\langle \frac{\partial}{\partial y}(-x^{2}y) - \frac{\partial}{\partial z}(0), \frac{\partial}{\partial z}(xyz) - \frac{\partial}{\partial x}(-x^{2}y), \frac{\partial}{\partial x}(0) - \frac{\partial}{\partial y}(xyz) \right\rangle = \langle -x^{2}, 3xy, -xz \rangle$$

(B)
$$\vec{F}(x, y, z) = \langle 0, \cos(xz), -\sin(xy) \rangle$$

$$\operatorname{div}\left(\vec{F}\right) = 0 \qquad \operatorname{curl}\left(\vec{F}\right) = \langle -x\cos(xy) + x\sin(xz), y\cos(xy), -z\sin(xz) \rangle$$

(C) $\nabla (e^{xyz})$

$$\nabla (e^{xyz}) = \langle yze^{xyz}, xze^{xyz}, xye^{xyz} \rangle \qquad \vec{F} \text{ is conservative, so } \operatorname{curl}\left(\vec{F}\right) = \vec{0}$$
$$\operatorname{div}\left(\vec{F}\right) = (y^2z^2 + x^2z^2 + x^2y^2) e^{xyz}$$